The expanding horizons of asparagine-linked glycosylation.
نویسندگان
چکیده
Asparagine-linked glycosylation involves the sequential assembly of an oligosaccharide onto a polyisoprenyl donor, followed by the en bloc transfer of the glycan to particular asparagine residues within acceptor proteins. These N-linked glycans play a critical role in a wide variety of biological processes, such as protein folding, cellular targeting and motility, and the immune response. In the past decade, research in the field of N-linked glycosylation has achieved major advances, including the discovery of new carbohydrate modifications, the biochemical characterization of the enzymes involved in glycan assembly, and the determination of the biological impact of these glycans on target proteins. It is now firmly established that this enzyme-catalyzed modification occurs in all three domains of life. However, despite similarities in the overall logic of N-linked glycoprotein biosynthesis among the three kingdoms, the structures of the appended glycans are markedly different and thus influence the functions of elaborated proteins in various ways. Though nearly all eukaryotes produce the same nascent tetradecasaccharide (Glc(3)Man(9)GlcNAc(2)), heterogeneity is introduced into this glycan structure after it is transferred to the protein through a complex series of glycosyl trimming and addition steps. In contrast, bacteria and archaea display diversity within their N-linked glycan structures through the use of unique monosaccharide building blocks during the assembly process. In this review, recent progress toward gaining a deeper biochemical understanding of this modification across all three kingdoms will be summarized. In addition, a brief overview of the role of N-linked glycosylation in viruses will also be presented.
منابع مشابه
Asparagine-linked protein glycosylation: from eukaryotic to prokaryotic systems.
Asparagine-linked protein glycosylation is a prevalent protein modification reaction in eukaryotic systems. This process involves the co-translational transfer of a pre-assembled tetradecasaccharide from a dolichyl-pyrophosphate donor to the asparagine side chain of nascent proteins at the endoplasmic reticulum (ER) membrane. Recently, the first such system of N-linked glycosylation was discove...
متن کاملChemistry and biology of asparagine-linked glycosylation*
The biosynthesis of glycoprotein conjugates is a complex process that involves the collective action of numerous enzymes. Recent research on the chemistry and biology of asparagine-linked glycosylation in our group has been focused on two speci®c areas. These are the development of potent inhibitors of oligosaccharyl transferase and the investigation of the conformational consequences of the gl...
متن کاملRole of N-linked glycosylation of the Hendra virus fusion protein.
The Hendra virus fusion (F) protein contains five potential sites for N-linked glycosylation in the ectodomain. Examination of F protein mutants with single asparagine-to-alanine mutations indicated that two sites in the F(2) subunit (N67 and N99) and two sites in the F(1) subunit (N414 and N464) normally undergo N-linked glycosylation. While N-linked modification at N414 is critical for protei...
متن کاملPrediction of Glycosylation Across the Human Proteome and the Correlation to Protein Function
The addition of a carbohydrate moeity to the side chain of a residue in a protein chain in uences the physicochemical properties of the protein Gly cosylation is known to alter proteolytic resistance protein solubility stability local structure lifetime in circulation and immunogenicity Of the various forms of protein glycosylation found in eukaryotic systems the most important types are N link...
متن کاملSubstitute sweeteners: diverse bacterial oligosaccharyltransferases with unique N-glycosylation site preferences
The central enzyme in the Campylobacter jejuni asparagine-linked glycosylation pathway is the oligosaccharyltransferase (OST), PglB, which transfers preassembled glycans to specific asparagine residues in target proteins. While C. jejuni PglB (CjPglB) can transfer many diverse glycan structures, the acceptor sites that it recognizes are restricted predominantly to those having a negatively char...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 50 21 شماره
صفحات -
تاریخ انتشار 2011